We have seen in our previous blog posts Customer Price Prediction on Machine Learning Scikit Learn Linear Regression and Random Forest models. These models can be used to implement data intelligence in any SAP ERP, SAP ECC, SAP S/4 HANA, Oracle, Microsoft, or any ERP systems with a few custom function calls and may add additional features.
Also, we have gone through also Customer Sales Order delivery time/days prediction using the Machine Learning Scikit Decision Tree model Scikit Linear Regression and Random Forest Linear Regression models.
This post will work on Customer Sales Order Delivery time/Days Prediction using the Tensorflow Keras Neural Network Regression model. We will check how it works (I couldn’t complete more codes due to time constraints (because of 100 days challenge); however, I will add more functions in the blog or cover them in Part II).
Let’s start and see how the Tensorflow Keras Neural Network Regression model predicts “Delivery days data,” You can also download from GitHub on my repository SODeliverDaysPredictionNeuralNetwork.
Note: The whole code executed in Google Colab.
700
300
[[ 1014574489.0 2023227582.0 40322838435.0 1323.0 9.0 11907.0] [ 1024513305.0 2024972236.0 40326745519.0 27.0 58.0 1566.0] [ 1010497257.0 2015105168.0 40323841642.0 634.0 97.0 61498.0] ... [ 1026584187.0 2017931603.0 40322403388.0 340.0 63.0 21420.0] [ 1014944383.0 2013028697.0 40326705150.0 1339.0 42.0 56238.0] [ 1021173035.0 2026818698.0 40329897632.0 1085.0 72.0 78120.0]]
[[ 1011627632.0 2027544468.0 40327541308.0 1219.0 52.0 63388.0] [ 1025267774.0 2027593030.0 40326545666.0 933.0 1.0 933.0] [ 1025634677.0 2024513382.0 40330535224.0 1167.0 55.0 64185.0] ... [ 1018725301.0 2014307274.0 40330102393.0 819.0 95.0 77805.0] [ 1027343417.0 2024199933.0 40325775424.0 795.0 93.0 73935.0] [ 1024227697.0 2021989936.0 40323273226.0 1217.0 6.0 7302.0]]
[ 5828232.2 5786546.4 2709093.9 427.1 28.3 32403.2] [ 1020214477.7 2019961009.5 40325920697.1 771.1 53.0 40802.0]
[[-1.0 0.6 -1.1 1.3 -1.6 -0.9] [ 0.7 0.9 0.3 -1.7 0.2 -1.2] [-1.7 -0.8 -0.8 -0.3 1.6 0.6] [ 1.5 1.5 0.4 0.2 1.0 0.9] [-1.4 -1.1 0.6 1.4 -1.3 -0.5]] [[ 0.8 0.6 0.5 0.6 0.6]]
Epoch 1/1000 1/1 - 1s - loss: 0.5947 - mae: 0.5947 Epoch 2/1000 1/1 - 0s - loss: 0.5913 - mae: 0.5913 Epoch 3/1000 1/1 - 0s - loss: 0.5857 - mae: 0.5857 Epoch 4/1000 1/1 - 0s - loss: 0.5769 - mae: 0.5769 Epoch 5/1000 1/1 - 0s - loss: 0.5639 - mae: 0.5639 Epoch 6/1000 1/1 - 0s - loss: 0.5465 - mae: 0.5465 Epoch 7/1000 1/1 - 0s - loss: 0.5273 - mae: 0.5273 Epoch 8/1000 1/1 - 0s - loss: 0.5096 - mae: 0.5096 Epoch 9/1000 1/1 - 0s - loss: 0.4935 - mae: 0.4935 Epoch 10/1000 1/1 - 0s - loss: 0.4784 - mae: 0.4784 .......
Epoch 994/1000 1/1 - 0s - loss: 0.1269 - mae: 0.1269 Epoch 995/1000 1/1 - 0s - loss: 0.1269 - mae: 0.1269 Epoch 996/1000 1/1 - 0s - loss: 0.1269 - mae: 0.1269 Epoch 997/1000 1/1 - 0s - loss: 0.1281 - mae: 0.1281 Epoch 998/1000 1/1 - 0s - loss: 0.1298 - mae: 0.1298 Epoch 999/1000 1/1 - 0s - loss: 0.1309 - mae: 0.1309 Epoch 1000/1000 1/1 - 0s - loss: 0.1298 - mae: 0.1298
<tensorflow.python.keras.callbacks.History at 0x7f0dc245e610>
Training - Actual Delivery Days: [[ 0.8 0.6 0.5 0.6 0.6 0.6 0.6 0.8 1.0 0.7]] Training - Predicted Delivery Days : [[ 0.6 0.6 0.4 0.6 0.6 0.6 0.7 0.8 0.7 0.5]]
[[ 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.3 0.2 0.0 0.4 0.1 0.3 0.1 0.4 0.1 0.0 0.3 0.2 0.1 0.0 0.2 0.3 0.0 0.2 0.1 0.0 0.1 0.1 0.2 0.3 0.1 0.0 0.5 0.0 0.1 0.3 0.1 0.3 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.3]]
Conclusion:
The above data shows 0.1 to 0.4 MAE.
We need to check with more epochs, early stop etc., to see the prediction accuracy in future blogs.
This model looks good, however, Random forest is much better
We will compare all four models in next blog and see the outcome and decide which one is a better model with this data.
Further Reading
Posts on Artificial Intelligence, Deep Learning, Machine Learning, and Design Thinking articles:
Artificial Intelligence in Hollywood Movies
Translate 125 Plus Languages Using Google Artificial Intelligence – Part 1
Thinking Humanly: The cognitive modeling approach – Artificial Intelligence
Leave A Comment