Day 79 – Detectron2 Computer Vision by Facebook AI Research (FAIR)

Detectron2 is Facebook AI Research (FAIR)’s a next-generation platform for object detection and segmentation.

Detection Algorithms
  • Mask R-CNN
  • RetinaNet
  • Faster R-CNN
  • RPN
  • Fast R-CNN
  • TensorMask
  • PointRend
  • DensePose etc
Detectron2 Features
  • Do an image panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc
  • Use the pre-trained model as-is for simple projects
  • Facebook Research project libraries Deeplab, Densepost, Panoptic-Deeplab, PointRend, PointSup, Rethinking-BatchNorm, TensorMask, TridentNet

Let’s copy existing code from Detectron2 and test the Mask R-CNN detection algorithm.

I am using Google Colab and you check the online code here.

Before you start the blow code on Google Colab, we need to set runtime type as GPU under Runtime -> Change runtime type -> Hardware accelerator -> GPU.
Copy to Clipboard
Copy to Clipboard
Copy to Clipboard
Copy to Clipboard
woman-serving-download
Copy to Clipboard
Portrait Of Mature Woman Serving
Copy to Clipboard
Copy to Clipboard
tensor([ 0,  0,  0,  0, 55,  0,  0, 55, 45, 48,  0,  0,  0, 39, 39, 25, 25, 39,
        39,  0,  0, 60, 41,  0, 44,  0, 39, 39, 54, 39, 55, 54,  0],
       device='cuda:0')
Boxes(tensor([[150.3712,  60.2129, 338.2161, 268.7473],
        [144.5688,  77.5492, 196.2379, 229.8734],
        [ 46.2298,  99.3896,  88.3717, 252.4606],
        [421.1779,  82.4461, 483.4353, 245.6750],
        [222.2740, 229.0623, 323.1384, 275.3803],
        [ 97.1342, 189.0907, 164.2664, 253.8456],
        [ 86.1958, 104.2277, 127.4977, 166.2799],
        [410.6570, 278.6946, 500.0000, 330.5542],
        [ 27.5215, 273.6751,  96.3706, 299.4804],
        [158.6536, 247.7489, 212.3477, 284.0824],
        [475.8810,  79.7495, 499.9792, 251.6478],
        [ 21.4694, 131.3979,  49.9615, 164.9136],
        [182.7235,  90.9372, 223.6169, 193.5774],
        [399.5022, 152.3770, 409.2560, 183.5939],
        [382.6896, 153.1429, 392.5776, 183.3090],
        [ 97.0409,  79.8444, 158.8211, 103.5967],
        [ 21.5652,  76.1865,  82.8017, 104.4624],
        [389.9488, 154.5239, 399.2343, 183.3714],
        [375.4870, 156.4993, 384.8447, 182.8736],
        [336.0491, 107.6095, 360.7059, 142.0714],
        [346.2415, 149.1063, 365.0637, 184.3042],
        [  6.4078, 239.0749, 425.2805, 331.7826],
        [267.7467, 292.4175, 295.4471, 331.8892],
        [374.1860, 112.5420, 390.7335, 138.9254],
        [285.8362, 260.0081, 300.0565, 296.2886],
        [322.8302, 156.0329, 347.9706, 205.8926],
        [407.4373, 164.7340, 413.3133, 183.9582],
        [366.8717, 161.6679, 375.0180, 183.7057],
        [334.2393, 269.6788, 359.9655, 286.1754],
        [401.0000, 166.1669, 408.8109, 183.7229],
        [  0.6008, 258.6386,  51.5398, 282.5691],
        [321.0331, 277.9724, 349.3161, 301.4594],
        [136.7884, 183.4937, 162.1519, 226.2848]], device='cuda:0'))
woman-serving-maskrcnn

Detectron2 Mask R-CNN identifies bowls, dining table, umbrella, person, spoons, cake, etc.

What is your thought on this Detectron2 Facebook AI Research library?

Would you please comment below?

Links:

Detectron2 – Facebook AI

Detectron2 Github Repository

Detectron2 Research Projects

By |2021-07-07T19:27:14+00:00July 6th, 2021|Artificial Intelligence|0 Comments

About the Author:

Leave A Comment