Day 69 – LazyPredict Classifier Models In Machine Learning – Part II

We have seen the introduction of Lazypredict and Regression models to make our life easy to check which models better for our data.

In this blog, we will go through a code of the Lazypredict Classifier problem.  I have prepared my own data and posted it onto the GitHub repository to download this data.

In this example, I am going to use Jupyter Notebook.  I have prepared my own data and posted it onto the GitHub repository to download this data.

Copy to Clipboard
Copy to Clipboard
Copy to Clipboard
Copy to Clipboard
Copy to Clipboard
Load Data of Delivery data
Copy to Clipboard
Copy to Clipboard
X Data
Copy to Clipboard
y Data
Copy to Clipboard
Copy to Clipboard
models_predict
Copy to Clipboard
                               Accuracy  Balanced Accuracy  ROC AUC  F1 Score  \
Model                                                                           
AdaBoostClassifier             1.000000           1.000000 1.000000  1.000000   
LinearDiscriminantAnalysis     1.000000           1.000000 1.000000  1.000000   
XGBClassifier                  1.000000           1.000000 1.000000  1.000000   
SGDClassifier                  1.000000           1.000000 1.000000  1.000000   
RidgeClassifierCV              1.000000           1.000000 1.000000  1.000000   
RidgeClassifier                1.000000           1.000000 1.000000  1.000000   
RandomForestClassifier         1.000000           1.000000 1.000000  1.000000   
Perceptron                     1.000000           1.000000 1.000000  1.000000   
PassiveAggressiveClassifier    1.000000           1.000000 1.000000  1.000000   
NearestCentroid                1.000000           1.000000 1.000000  1.000000   
LogisticRegression             1.000000           1.000000 1.000000  1.000000   
BaggingClassifier              1.000000           1.000000 1.000000  1.000000   
LinearSVC                      1.000000           1.000000 1.000000  1.000000   
GaussianNB                     1.000000           1.000000 1.000000  1.000000   
ExtraTreesClassifier           1.000000           1.000000 1.000000  1.000000   
DecisionTreeClassifier         1.000000           1.000000 1.000000  1.000000   
CalibratedClassifierCV         1.000000           1.000000 1.000000  1.000000   
BernoulliNB                    1.000000           1.000000 1.000000  1.000000   
LGBMClassifier                 1.000000           1.000000 1.000000  1.000000   
SVC                            0.998000           0.997642 0.997642  0.997999   
QuadraticDiscriminantAnalysis  0.992000           0.990566 0.990566  0.991989   
NuSVC                          0.984000           0.981132 0.981132  0.983956   
KNeighborsClassifier           0.978000           0.974679 0.974679  0.977931   
ExtraTreeClassifier            0.960000           0.961544 0.961544  0.960089   
LabelSpreading                 0.960000           0.957187 0.957187  0.959919   
LabelPropagation               0.960000           0.957187 0.957187  0.959919   
DummyClassifier                0.508000           0.494497 0.494497  0.507005   

                               Time Taken  
Model                                      
AdaBoostClassifier               0.021941  
LinearDiscriminantAnalysis       0.000000  
XGBClassifier                    0.029637  
SGDClassifier                    0.012965  
RidgeClassifierCV                0.015958  
RidgeClassifier                  0.017968  
RandomForestClassifier           0.147104  
Perceptron                       0.000000  
PassiveAggressiveClassifier      0.015622  
NearestCentroid                  0.011968  
LogisticRegression               0.026497  
BaggingClassifier                0.039891  
LinearSVC                        0.015622  
GaussianNB                       0.015621  
ExtraTreesClassifier             0.136031  
DecisionTreeClassifier           0.017724  
CalibratedClassifierCV           0.023703  
BernoulliNB                      0.012965  
LGBMClassifier                   0.053272  
SVC                              0.008027  
QuadraticDiscriminantAnalysis    0.017415  
NuSVC                            0.014008  
KNeighborsClassifier             0.044704  
ExtraTreeClassifier              0.012965  
LabelSpreading                   0.031243  
LabelPropagation                 0.014095  
DummyClassifier                  0.011968
Many classifiers works best for this data.
By |2021-06-27T20:49:13+00:00June 26th, 2021|Machine Learning|0 Comments

About the Author:

Leave A Comment