Image Source: Pexels
We have already gone through and , one of the blogs. We don’t need to create a new architecture from scratch for our projects; instead, we can use existing Convolutional Neural Networks(CNN) popular architectures like LeNet-5, ResNet, VGG16, VGG19, etc. models to check how it predicts. Today, we will use Convolutional Neural Networks(CNN) VGG19 architecture pre-trained model to predict “Alps Mountain” and check how much accuracy shows. We can also compare and see with ResNet50. VGG16 by Oxford Visual Geometry Group and won the ILSVRC challenge in 2016.
I am working on a few kinds of research on the Enterprise Resource Planning side and using Convolutional Neural Networks(CNN) Image Recognition and computer vision.
I have used Google Colab IDE for this example, and you can download it from the GitHub Repository.
array([[[[ 97., 192., 238.], [ 96., 188., 235.], [ 95., 187., 234.], ..., [103., 177., 206.], [104., 175., 205.], [108., 179., 209.]], [[ 93., 185., 232.], [ 93., 185., 232.], [ 95., 187., 234.], ..., [108., 179., 211.], [107., 180., 212.], [108., 181., 213.]], [[ 95., 187., 234.], [ 97., 188., 235.], [ 95., 186., 233.], ..., [105., 176., 208.], [105., 178., 210.], [111., 186., 217.]], ..., [[ 2., 78., 104.], [ 0., 83., 111.], [ 2., 88., 113.], ..., [ 19., 75., 62.], [ 24., 76., 63.], [ 26., 62., 48.]], [[ 1., 81., 108.], [ 2., 89., 117.], [ 1., 91., 118.], ..., [ 10., 61., 54.], [ 11., 61., 50.], [ 20., 60., 49.]], [[ 2., 86., 114.], [ 0., 94., 122.], [ 3., 97., 125.], ..., [ 12., 67., 61.], [ 22., 75., 67.], [ 17., 65., 53.]]]], dtype=float32)
array([[1.44714955e-04, 9.93950409e-04, 3.14685676e-05, 1.26783008e-04, 6.66538108e-06, 7.83604446e-06, 2.83227237e-05, 1.18339249e-05, 2.49433378e-06, 4.34449066e-06, 2.53626354e-06, 2.93942480e-06, 2.30660885e-06, 7.64215201e-06, 2.44088801e-06, 7.85484644e-06, 1.62735796e-06, 8.09757330e-06, 1.06814496e-05, 7.31103546e-06, 2.73813584e-05, 1.35912187e-05, 7.62647396e-05, 1.79398703e-04, 3.44021355e-05, 8.79690197e-06, 1.09062694e-05, 9.38541598e-06, 4.21359664e-06, 2.30017831e-05, 6.82864720e-06, 1.76968661e-05, 1.85795170e-06, 1.19683509e-05, 2.09907503e-05, 1.32699470e-05, 5.65877017e-05, 3.05209073e-06, 1.92298080e-06, 1.09852641e-04, 2.44813000e-05, 2.07912791e-07, 8.39832228e-06, 3.57674435e-05, 4.35719176e-06, 4.15362274e-06, 5.57095373e-05, 1.85729630e-04, 1.60977743e-05, 1.24521859e-04, 6.41749066e-04, 1.02501290e-04, 1.39750412e-07, 6.22864945e-07, 1.92322295e-06, 9.14579505e-06, 1.52810316e-07, 7.37031939e-07, 7.90031299e-06, 1.66819768e-06, 8.38351411e-07, 8.54717655e-07, 2.35894072e-06, 9.24356556e-08, 1.22537376e-05, 2.15595651e-06, 2.13135718e-06, 2.60976003e-06, 3.66917362e-07, 3.74767910e-06, 7.15657620e-07, 2.91628839e-06, 2.32265438e-06, 1.27806504e-06, 2.59394915e-06, 2.03140871e-07, 7.23031235e-06, 1.53086069e-06, 2.09157164e-07, 8.02441900e-06, 6.87585198e-05, 5.15966804e-06, 5.48056596e-06, 8.63324021e-06, 3.22763262e-05, 8.53801112e-07, 7.29432759e-06, 1.48048889e-06, 4.36880691e-05, 4.12238624e-05, 2.40113841e-05, 1.48009360e-06, 2.45230094e-05, 5.36958214e-06, 8.11686368e-06, 5.64163372e-07, 3.23154709e-05, 9.74655541e-06, 3.61843263e-07, 7.04899721e-05, 1.45428086e-04, 1.52728589e-05, 5.76341620e-07, 6.71158114e-06, 4.24739346e-06, 1.59419272e-07, 1.98276507e-06, 5.40171677e-05, 3.53250252e-05, 8.52953162e-05, 2.00437298e-05, 6.59633656e-07, 6.06071146e-04, 1.00655721e-04, 1.20072318e-05, 3.34425094e-05, 7.64317665e-05, 7.19689560e-05, 1.90805804e-06, 5.85403996e-06, 1.35276082e-07, 2.80414201e-06, 5.17011756e-07, 1.41909277e-06, 4.19983189e-06, 1.77427046e-06, 6.66595006e-05, 3.64818493e-06, 6.73406612e-06, 7.89121405e-05, 6.35085962e-06, 1.40553175e-05, 2.31908460e-04, 2.47481330e-05, 9.85893785e-05, 3.26421673e-06, 5.68904170e-06, 3.80081974e-06, 2.25660847e-06, 5.49741344e-07, 6.96845518e-07, 7.97772827e-06, 1.59283934e-06, 4.35285983e-06, 4.80297531e-05, 1.27889420e-04, 1.33130004e-06, 3.73003968e-06, 2.53670005e-05, 1.64785240e-06, 6.12197709e-06, 9.19888316e-06, 3.81631435e-06, 9.50867161e-06, 8.44637441e-07, 8.91758532e-07, 7.87039062e-06, 2.81084522e-05, 4.80955748e-07, 6.28021644e-06, 7.73300235e-06, 8.18883746e-06, 2.97159863e-06, 6.11748874e-06, 4.31664694e-06, 4.76520518e-06, 2.27576743e-06, 4.90572029e-06, 2.66253778e-06, 1.28191696e-05, 2.19685671e-06, 1.28113538e-06, 5.57474550e-06, 2.36888845e-05, 8.58084604e-06, 7.59815293e-07, 3.87469026e-06, 5.90218770e-06, 2.15819582e-05, 1.23980442e-06, 7.48863386e-07, 3.58207615e-07, 8.68910547e-07, 2.69605357e-06, 3.34197603e-06, 2.65896256e-06, 4.16995908e-06, 1.18188800e-05, 1.20532673e-06, 6.91801858e-07, 9.51366474e-07, 4.47759339e-06, 5.46379852e-06, 1.18617427e-05, 5.33946661e-07, 9.56257099e-06, 2.00696968e-06, 2.51379061e-05, 2.79902292e-06, 2.18059558e-05, 4.36407845e-06, 3.34606148e-06, 2.88223987e-07, 2.98208586e-04, 3.74487786e-06, 6.98084768e-05, 1.11181098e-05, 3.15377874e-05, 3.60177619e-05, 3.52135044e-06, 7.29847841e-07, 7.06276160e-06, 4.75398701e-05, 2.60704255e-05, 3.60770646e-05, 1.63827135e-05, 3.47589266e-05, 4.13141288e-06, 7.55027395e-06, 1.41790179e-05, 1.28617112e-05, 1.21576306e-06, 1.30975359e-05, 5.12430452e-05, 4.55324596e-04, 4.96775692e-06, 1.71672837e-05, 9.95865503e-06, 1.42647486e-05, 2.67403720e-06, 4.62243988e-05, 1.08122003e-04, 6.96630304e-05, 1.01217165e-05, 1.26285049e-05, 1.47639239e-05, 7.60654530e-06, 2.17636334e-05, 3.05967224e-05, 2.45210686e-05, 1.16229960e-04, 5.25895266e-05, 5.97960252e-06, 3.36307789e-06, 1.04995695e-06, 1.64677624e-06, 2.93490666e-06, 1.58270414e-05, 3.34604374e-05, 4.98932459e-05, 4.02855039e-05, 1.17960763e-05, 3.29301702e-06, 4.64647455e-05, 5.23711378e-06, 1.02892209e-05, 1.50991864e-05, 4.09267377e-05, 9.96325907e-05, 1.15651956e-05, 9.36469951e-06, 4.52251697e-06, 6.56852706e-07, 2.14209504e-05, 4.43362296e-06, 1.19206038e-06, 2.85718471e-07, 5.99256191e-06, 9.20712012e-07, 5.99413070e-05, 5.81558670e-05, 2.96980397e-05, 2.80233089e-05, 1.97171412e-05, 1.65164183e-05, 4.49317622e-06, 1.65184258e-06, 4.33563146e-05, 1.58052228e-06, 1.30297136e-04, 3.40264123e-05, 9.37608456e-06, 1.20002942e-05, 5.77350784e-06, 4.81248208e-06, 2.55520035e-06, 2.68073345e-05, 8.26904125e-06, 6.31758667e-06, 4.96468374e-06, 4.02299293e-06, 2.13743510e-06, 2.62751728e-05, 2.98517330e-06, 2.84262002e-04, 2.85436072e-05, 4.10919194e-04, 3.54271797e-05, 2.82144674e-06, 3.74475303e-06, 5.34908907e-07, 7.54600187e-05, 2.10657845e-06, 8.10040319e-07, 3.78262230e-05, 2.09191271e-07, 1.21340577e-06, 1.65591282e-05, 1.24709322e-05, 2.81887442e-05, 4.06218423e-05, 1.97499448e-05, 2.74922477e-05, 1.02085078e-05, 6.22769585e-06, 8.37208916e-07, 3.25816450e-06, 1.85272402e-05, 4.64884306e-06, 6.34490243e-06, 1.61091157e-06, 1.59675510e-05, 2.13909107e-06, 1.97740019e-06, 4.06394520e-06, 1.74310280e-05, 6.06122285e-06, 6.31881921e-05, 7.11036337e-05, 2.62268550e-05, 1.82704341e-07, 3.05288245e-06, 1.63888319e-06, 1.20903837e-06, 1.71993440e-06, 1.00400557e-05, 1.50418118e-05, 3.15416514e-06, 2.27758233e-06, 3.23932113e-06, 4.30230139e-05, 5.12833794e-05, 2.40502523e-05, 4.32960042e-06, 8.70668300e-05, 8.30391145e-05, 8.16539978e-05, 3.78613535e-04, 2.98469076e-05, 5.31700716e-05, 1.05544052e-04, 8.28528664e-06, 3.48326939e-05, 5.96079690e-06, 7.30319562e-06, 7.74853106e-05, 5.69760959e-06, 1.43073169e-06, 9.54794018e-07, 5.08392759e-07, 3.33289540e-06, 9.01824706e-07, 6.31741500e-07, 2.67015639e-06, 4.54817638e-07, 8.32557907e-06, 6.38931988e-06, 3.83862016e-06, 8.07934157e-07, 7.52686537e-06, 6.36655932e-06, 1.94026939e-06, 4.86999988e-06, 2.12482319e-05, 1.72086220e-05, 2.30315254e-05, 1.15698890e-06, 5.29189811e-06, 6.69693634e-07, 8.71213524e-06, 6.36137020e-06, 7.61471074e-06, 8.43212547e-06, 7.39428833e-06, 2.49026471e-06, 5.41659902e-05, 1.54396621e-05, 1.19874778e-06, 1.17169145e-06, 4.93326224e-05, 2.51164347e-05, 1.44682606e-04, 1.14543502e-04, 9.18839360e-05, 6.57210549e-05, 1.33940455e-04, 4.74087974e-05, 6.44278916e-05, 4.34470621e-06, 8.47474366e-05, 3.07737832e-06, 4.35715037e-06, 6.05920604e-06, 5.56287614e-06, 7.78101276e-06, 1.45523183e-04, 4.25921971e-05, 2.61670702e-05, 4.41587690e-05, 4.01096622e-05, 2.61170844e-05, 1.31518345e-05, 8.01341412e-06, 4.33868809e-05, 4.51280175e-06, 9.18667138e-06, 2.76935384e-06, 1.28557940e-03, 2.79971187e-06, 3.47902483e-06, 2.31730905e-06, 9.27546644e-05, 2.73403856e-07, 1.13320698e-06, 1.84086480e-06, 7.61844823e-03, 2.55995428e-06, 5.06774268e-06, 1.36151266e-05, 6.13485497e-07, 4.66847609e-08, 3.59423793e-05, 6.18587364e-07, 4.30154651e-05, 7.70335373e-06, 9.74647992e-06, 1.27592898e-06, 7.45826546e-05, 1.77683910e-06, 3.02871445e-06, 2.69498832e-05, 5.87377835e-05, 4.01548430e-04, 2.30628325e-06, 2.29942680e-06, 2.30743735e-05, 2.63631341e-06, 3.22669366e-05, 3.11213807e-05, 5.54219820e-03, 2.55234227e-05, 7.52292124e-07, 5.41412555e-05, 4.23620031e-06, 7.91169805e-06, 1.57411050e-05, 2.64040727e-06, 7.53699715e-05, 2.91570746e-06, 3.85192652e-05, 4.65457095e-04, 2.89980562e-05, 1.07556058e-04, 1.97457371e-06, 2.48701576e-06, 6.51627624e-06, 4.68668532e-06, 1.34126060e-06, 1.42939462e-05, 3.68090477e-05, 1.28375032e-04, 1.16471356e-05, 1.50445593e-03, 7.64523918e-07, 2.17158467e-05, 1.48186766e-04, 1.83202399e-04, 7.91121863e-07, 5.52466736e-06, 1.63051754e-06, 3.44627347e-06, 4.48046376e-06, 1.58922364e-06, 6.94496706e-02, 2.14828651e-06, 6.87632337e-07, 2.52223981e-06, 1.20931043e-06, 8.15560998e-05, 8.38590568e-05, 1.26049817e-05, 2.44697931e-05, 3.36422295e-06, 2.86385472e-07, 1.21217809e-05, 1.25056306e-06, 3.71863507e-06, 6.38233824e-03, 1.30036078e-05, 3.09064853e-06, 7.97373941e-05, 3.13690456e-04, 3.41764189e-06, 2.35785888e-06, 2.82850010e-06, 2.79491519e-06, 2.47544103e-05, 2.45090882e-06, 2.34576305e-06, 8.23045866e-06, 1.52571656e-05, 1.26729458e-06, 2.29803481e-06, 2.13798762e-06, 6.26840529e-06, 8.44484020e-06, 7.01205427e-05, 1.64575977e-05, 5.71717192e-06, 7.21260221e-07, 9.92735477e-06, 1.28405884e-06, 3.57923341e-06, 1.66069594e-06, 9.46385353e-06, 1.41802756e-02, 4.46977481e-07, 2.11560200e-06, 8.93430354e-07, 1.66548816e-05, 1.04379753e-04, 8.76886770e-06, 5.08481492e-07, 7.65622372e-06, 2.69397560e-07, 5.26768886e-08, 4.68152393e-05, 1.98205802e-04, 5.23003167e-04, 3.52943312e-06, 1.04061501e-05, 1.36539995e-06, 6.78506638e-07, 2.39792894e-06, 6.04945399e-06, 2.07672628e-07, 1.66562234e-06, 4.77155299e-06, 2.53784128e-06, 2.91994129e-05, 4.57195597e-07, 2.30927640e-06, 1.64508179e-04, 2.40610547e-07, 8.77518760e-05, 2.73743194e-06, 9.64457213e-05, 1.20666831e-04, 1.54837071e-05, 3.34074912e-06, 7.74785804e-07, 6.13496377e-06, 1.25510052e-01, 7.41077292e-06, 1.27797117e-04, 9.13036565e-05, 3.82184317e-06, 1.32540549e-06, 3.52402481e-06, 6.88961245e-06, 1.24653743e-04, 2.73799060e-06, 2.95171903e-05, 2.72213612e-07, 7.23944731e-06, 3.28255846e-05, 3.28864080e-05, 5.83736573e-06, 8.35533894e-04, 1.78414321e-05, 4.58974531e-03, 2.59267813e-06, 7.66575067e-06, 1.37285679e-06, 1.07487704e-05, 4.52914674e-06, 4.06688787e-06, 4.88383364e-07, 1.66944380e-06, 7.56278723e-07, 5.23195865e-07, 7.60887051e-05, 7.10953600e-07, 5.48404250e-06, 3.02348531e-06, 5.16737709e-05, 1.73627302e-06, 1.22060055e-06, 2.34298986e-05, 1.01718266e-04, 3.37963593e-06, 7.01960744e-05, 1.20844129e-06, 6.73143359e-06, 2.53531198e-05, 2.56567068e-06, 1.02181650e-06, 9.93532522e-05, 5.53771497e-05, 6.26194305e-05, 2.75895195e-06, 9.83676524e-04, 3.96151017e-06, 3.15216397e-07, 5.83759647e-05, 2.47959690e-07, 4.32128445e-06, 4.69906445e-06, 4.00775775e-07, 3.27828835e-04, 1.80199877e-05, 1.90150658e-05, 2.30194564e-06, 1.07022242e-06, 2.68390158e-06, 1.90605567e-06, 1.74279521e-05, 9.30856004e-06, 1.04249839e-05, 2.82099099e-05, 2.12166742e-06, 2.70091755e-06, 5.77540231e-06, 5.94594394e-06, 3.35120458e-05, 5.11231121e-07, 2.32305320e-06, 2.36238866e-05, 2.33298742e-05, 7.39259622e-06, 1.01399266e-07, 3.61504408e-06, 5.55498482e-05, 1.19552948e-04, 1.05439874e-04, 1.04576739e-05, 2.01586270e-04, 3.87783786e-07, 1.60682407e-06, 2.57548290e-05, 6.76150557e-06, 1.38307350e-05, 6.97570658e-06, 9.09864809e-07, 6.32671217e-05, 3.02312656e-05, 1.00210009e-05, 6.19946877e-05, 1.48413537e-05, 1.30140836e-06, 1.61695825e-05, 2.16725948e-06, 4.44880072e-07, 1.70511752e-03, 1.60278607e-04, 2.06856180e-06, 8.26213181e-07, 4.66375923e-06, 7.89224869e-04, 7.21374119e-04, 1.63890968e-06, 8.21839130e-05, 9.80948564e-03, 1.75796060e-07, 1.22130496e-06, 3.81116070e-06, 1.52464153e-07, 7.31360842e-06, 4.91778655e-06, 1.04197043e-05, 1.85839826e-06, 2.65726680e-06, 2.29962770e-05, 8.14964278e-06, 8.11199186e-07, 9.10358665e-07, 4.79381583e-08, 2.97377323e-06, 9.29450835e-06, 9.60554316e-05, 7.92449737e-06, 4.95911854e-06, 2.90892931e-05, 9.68972890e-05, 3.82653125e-05, 3.54023578e-05, 3.80163168e-04, 2.09438508e-06, 8.94934312e-03, 3.83313163e-05, 2.40989266e-05, 6.77487638e-04, 6.06309300e-07, 3.44661035e-04, 7.24051097e-06, 1.90102801e-05, 3.99064120e-05, 4.41300102e-07, 2.72343846e-06, 1.35487835e-05, 3.84238410e-05, 3.58401703e-05, 5.98363840e-07, 6.94590312e-07, 3.99167646e-07, 1.77976801e-06, 4.32023639e-03, 1.19397419e-06, 2.35759260e-04, 3.41569330e-06, 8.16465274e-07, 7.47343875e-05, 1.27297074e-06, 1.62525248e-05, 5.30298021e-05, 1.03127986e-05, 1.60218988e-07, 1.20287390e-04, 1.49513100e-04, 4.37232870e-07, 5.47719319e-05, 2.39326596e-06, 6.47284014e-06, 8.59472857e-06, 1.65779386e-06, 3.84226092e-04, 7.42140992e-06, 7.33119896e-06, 3.01199384e-06, 1.88721742e-06, 1.79550523e-06, 1.71371357e-05, 3.76970615e-06, 2.64481405e-05, 1.22006923e-05, 5.60106037e-06, 3.20621965e-08, 3.56109263e-06, 2.69428278e-06, 2.93799967e-05, 3.00761370e-04, 7.59047623e-07, 2.77748541e-07, 1.37740944e-05, 4.95244706e-07, 1.44506639e-05, 1.25196652e-06, 2.04856682e-04, 2.39991368e-05, 1.51341089e-06, 1.96746932e-05, 1.05146705e-06, 7.00899909e-05, 6.10502275e-06, 5.09750207e-05, 1.31850061e-06, 3.05437356e-06, 7.18731008e-06, 3.09868653e-07, 5.41049394e-06, 3.55704333e-06, 3.81433665e-07, 1.52391485e-05, 5.54605231e-06, 6.60281273e-07, 1.55462723e-04, 1.44475362e-05, 2.66315737e-06, 3.34570217e-07, 7.32056214e-05, 1.39755766e-05, 7.35772687e-07, 2.02945695e-04, 2.14583688e-05, 2.78108905e-06, 4.81601728e-06, 2.28538715e-06, 4.08594497e-06, 9.40966288e-07, 3.12678822e-06, 8.10134964e-08, 3.63377490e-06, 3.31193442e-05, 1.09878099e-04, 5.86889044e-04, 1.09050576e-04, 2.43393661e-04, 8.57719351e-05, 2.62104749e-07, 9.85947827e-06, 2.64415689e-06, 2.17324214e-05, 1.98278110e-04, 3.76144308e-04, 8.40111397e-07, 3.16844944e-06, 4.39692449e-05, 3.60804370e-05, 4.70703480e-06, 4.41952068e-07, 1.32872316e-07, 6.12612666e-07, 1.05658655e-04, 1.12266321e-06, 7.57072166e-06, 1.47980085e-04, 2.08926804e-06, 5.17502599e-07, 4.57661285e-04, 5.11424500e-04, 3.15348989e-05, 5.16414075e-05, 4.09983249e-06, 2.04137905e-07, 1.18675533e-04, 1.84740900e-04, 2.22259564e-06, 1.19537044e-05, 1.06769016e-06, 8.08187760e-05, 2.77156801e-06, 5.68456526e-05, 1.14128496e-02, 2.39847886e-05, 5.46495494e-06, 1.74064837e-06, 1.00392375e-04, 2.41997768e-05, 1.04285327e-05, 1.93671905e-03, 2.96456055e-05, 2.15976470e-05, 2.87566036e-06, 8.44919487e-05, 1.23012978e-05, 3.83619990e-05, 1.25679162e-05, 1.14992408e-05, 4.76936293e-07, 6.23678352e-06, 1.54639383e-06, 1.01053440e-04, 7.49499713e-06, 2.61491485e-04, 1.56690262e-03, 4.08316373e-06, 1.11798988e-06, 1.66422426e-04, 1.07789398e-04, 1.02873082e-05, 2.29807847e-06, 3.05756475e-06, 2.19733265e-04, 2.81367596e-04, 1.34871800e-06, 3.72290356e-06, 4.31499029e-05, 4.36455084e-05, 1.77590991e-05, 2.13052181e-06, 5.73515649e-07, 3.55046541e-06, 5.17432287e-04, 1.49896432e-05, 4.62287176e-07, 1.22886877e-06, 3.89151937e-05, 4.31168883e-06, 3.16389134e-07, 7.24991143e-04, 1.59541250e-05, 3.60390504e-06, 2.45808792e-06, 3.58678176e-06, 3.45878689e-05, 1.97894915e-04, 8.58600379e-06, 5.45678704e-05, 1.54423364e-03, 2.88227147e-06, 6.96886048e-07, 3.80836127e-07, 1.09409066e-05, 5.40099791e-06, 2.65079211e-06, 6.66153664e-06, 1.15508374e-06, 1.15016030e-06, 4.98223999e-05, 9.13794884e-06, 9.50735648e-06, 2.90591231e-07, 4.62982280e-06, 8.32266160e-05, 6.88465661e-04, 1.42698584e-04, 2.73367874e-07, 4.82496616e-05, 9.22393301e-05, 4.68388362e-06, 6.04316597e-07, 6.30739160e-05, 4.48798615e-04, 1.04029699e-04, 7.13986651e-07, 1.40612639e-04, 5.57070962e-05, 4.72622633e-05, 2.68640588e-06, 1.99502756e-06, 4.15163304e-05, 1.93878222e-04, 1.04533706e-06, 1.39867825e-06, 1.54243571e-05, 2.14404986e-06, 1.23459102e-07, 1.20739351e-05, 1.07149799e-06, 2.46806067e-05, 4.54753888e-07, 1.19176138e-06, 1.39558301e-06, 1.62008769e-06, 4.23403117e-06, 2.29279635e-06, 2.10096085e-04, 3.99710843e-05, 1.54138434e-05, 2.30619880e-05, 6.07326410e-06, 4.00309591e-06, 1.27459964e-06, 9.42859424e-06, 2.60678644e-05, 1.36678079e-06, 2.23194711e-05, 1.65960591e-04, 3.34645229e-05, 9.61714250e-06, 3.97372642e-05, 2.34125779e-04, 9.09878236e-06, 3.35575896e-05, 3.54566546e-05, 3.28384849e-05, 1.34329969e-06, 1.25315387e-06, 3.62001912e-04, 4.02885746e-07, 2.47799392e-07, 1.27973726e-06, 4.62767531e-07, 6.43470855e-07, 5.30792818e-07, 1.40275517e-06, 3.73046305e-06, 5.77091214e-07, 7.61495721e-06, 2.72218676e-06, 3.08668584e-01, 4.34981630e-04, 1.06560960e-02, 6.44045474e-04, 3.10637959e-04, 4.61280681e-02, 3.61491140e-04, 4.05156788e-05, 1.82633885e-04, 2.62389690e-01, 5.09233959e-02, 5.70653583e-07, 1.04606175e-03, 2.15993263e-04, 1.60622282e-03, 1.72721357e-05, 6.53350362e-05, 4.06287363e-05, 1.93409815e-05, 6.72790047e-05, 8.78218634e-05, 7.81626222e-05, 3.99465462e-05, 4.28662759e-07, 2.78910619e-07, 4.62737307e-06, 2.33212886e-05, 5.22128539e-06, 5.44130635e-05, 1.49917887e-05]], dtype=float32)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json 40960/35363 [==================================] - 0s 0us/step 49152/35363 [=========================================] - 0s 0us/step
[[('n09193705', 'alp', 0.30866858), ('n09468604', 'valley', 0.2623897), ('n03388043', 'fountain', 0.12551005), ('n02980441', 'castle', 0.06944967), ('n09472597', 'volcano', 0.050923396)]]
Wow! Correctly predicted as “Alps Mountain” and 0.308 prediction accuracy.
Let’s check the prediction accuracy on VGG16 and ResNet50.
VGG16:
[[('n09193705', 'alp', 0.32918993), ('n09468604', 'valley', 0.32035673), ('n09246464', 'cliff', 0.08723663), ('n03388043', 'fountain', 0.060651984), ('n01943899', 'conch', 0.024463423)]]
ResNet50:
[[('n03388043', 'fountain', 0.86726224), ('n09193705', 'alp', 0.029720154), ('n09468604', 'valley', 0.02816105), ('n03792972', 'mountain_tent', 0.016437855), ('n02948072', 'candle', 0.009712413)]]
Leave A Comment